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Abstrrd. Stochastic models of surface deposition and growth processes fall into two classes 
with different scaling properties of the surface fluctuations. The class to which a given 
model belongs is determined by the variation of the macroscopic growth velocity with 
surface inclination. A distinction is made between deposition and growth processes, and 
it is shown that the non-linearity of the surface evolution equation is due to different 
mechanisms in the two cases. 

Thirty years after the pioneering work of Vold [ l ]  and Eden [ 2 ]  simple stochastic 
models of deposition and growth processes continue to attract much attention [ 3 ] .  
While the early investigations focused on bulk properties of the deposit, the availability 
of large computers has made it possible to study more refined aspects of the process, 
such as the statistical fluctuations of the growing surface [ 4 ] .  The numerical data are 
commonly presented in terms of the dependence of the variance 5 of the surface 
position on the linear substrate size L and the deposit thickness h, which can be written 
in the scaling form [ 5 , 6 ]  

t ( L ,  t )  = L 5 f ( h / L 2 ) .  (1)  

Here 5 and z are characteristic scaling exponents and the scaling function f has the 
asymptotic behaviour f ( x  + a) = constant, f ( x  + 0) oc xi". 

A theory of deposition and growth processes should be able to predict the values 
of 5 and z for a given model. The first step in this direction is due to Edwards and 
Wilkinson [ 7 ] .  They derived a linear Langevin equation for the growing surface which 
yields the exponents [ 81 

50 = ( 2 - d I/ 2 20 = 2 ( 2 )  

where d is the substrate dimension. The surface is smooth ( l o < O )  for d > 2  and 
logarithmically rough for d = 2. This work was later extended by Kardar et a1 [9] who 
proposed the following generic equation for surface growth; 

ah(x,  t ) / a t  = DV2h(x ,  t ) + ( A / Z ) ( V h ( x ,  t ) ) 2 +  ~ ( x ,  r ) .  (3) 

Here h(x ,  f )  measures the height of the surface relative to the average height above a 
point x of the substrate at time t, and r](x,  t )  is white noise in space and time. With 
A =0, (3) reduces to the linear equation of Edwards and Wilkinson [ 7 ] .  Kardar er a1 
demonstrated [9 ]  that the non-linear term in (3) changes the dynamic exponent to 
z = in d = 1, while 5 = lo = f. In higher dimensions the non-linearity is expected to 
roughen the surface as compared to (2), i.e. 5 >  Lo, but the exact values of 5 and z are 
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still unknown for d 3 2. Independent of d the exponents satisfy the scaling relation 

(4) 

In the physically relevant case d = 2 a recent theoretical approach [ 121 suggests that 

The theory of Kardar et a1 [9] is expected to apply to any deposition or growth 
process which generates a compact structure with a well defined, continuous surface. 
The published simulation results fall into two classes which are consistent with the 
predictions of either the linear ( A  = 0) or the nonlinear ( A  # 0) version of (3). It is the 
purpose of this letter to clarify which features of a given model determine the class to 
which it belongs. A distinction is made between deposition and growth processes, and 
it is shown that the non-linearity in ( 3 )  is generated through different mechanisms in 
the two cases. As a consequence, a class of deposition processes which have A = 0 is 
identified. A specific one-dimensional model of this class was briefly discussed in a 
previous publication [ 131. 

The evolution (3) describes the growing surface on a hydrodynamic scale 1141 
which is large compared to the size of the individual particles. Implicit in such a 
description is the assumption of local equilibrium, which states that on scales below 
the hydrodynamic scale the system is uniform.. Therefore, up to curvature corrections, 
the local velocity v = d h ( x ,  ? ) / a t  of the surface is determined by its local inclination 
U = IVh(x, t ) \  through a function U( U )  defined as the growth velocity of a macroscopic 
surface of constant inclination U. The non-linearity in (3) then arises as the leading 
non-trivial term in an expansion of u ( u )  around the average inclination uo.  Hence 
the coupling constant is 

[lo, 111  

z = min(2,2 - 5). 

J 2 L  3. 

A = U"( u0).  ( 5 )  

An intuitive derivation of this result, along with the scaling relation (4), was given in 
[ 151. For one-dimensional models the calculation of v (  U )  is considerably simplified 
by the mapping to driven diffusive systems [13, 161. 

A deposition process is characterised by a uniform particle flux J towards the surface. 
Usually the flux is assumed to be sufficiently dilute so that different deposition events 
do not interfere. The geometry is chosen such that particles fall along vertical trajec- 
tories ('rain model'). The surface height is measured in the direction of the flux and 
the surface has some inclination U relative to the horizontal. The deposit mass per 
horizontally projected substrate area increases at rate J independent of U. The deposit 
thickness is related to its mass through the density p. This yields the relation 

v ( u )  = J / p ( u ) .  (6) 

For deposition processes, a non-linear variation of the growth velocity with surface 
inclination is therefore solely due to a corresponding variation of the deposit density. 
Two classes of deposition processes may be distinguished, depending on whether the 
deposit has a regular (crystalline) or an irregular (amorphous) structure. In the first 
case, to be referred to as class I in the following, the deposit density is clearly insensitive 
to changes in the surface inclination. Class I processes are therefore described by the 
linear theory [7]. An example of such a process is the model introduced by Family 
[8] and extended to d = 2 by Liu and Plischke [17]. For this model the predictions 
(2) were verified both in d = 1 and 2. On the other hand, if the deposit is amorphous 
(class I1 processes), its internal structure and its density will respond even to slight 
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variations of the surface inclination. The function p (  U )  has been determined for various 
deposition models [ l5 ,  18,191 and also in vapour deposition experiments [20,21]. It 
has a maximum at U = 0 which gives rise to a non-zero A for normal incidence deposition. 
Typical class I1  deposition models are the lattice [5,22] and off-lattice [18, 191 versions 
of Vold’s ballistic deposition model [l], and variations of it which include partial 
restructuring [18, 191, a finite concentration of incoming particles [23] or spatial 
correlations in the particle flux [24]. In all these cases the measured scaling exponents 
are consistent with the predictions [9- 121 of the non-linear theory. 

A different scaling behaviour is observed [ 15,18,25] in the limit of grazing particle 
incidence ( U  + a), where the deposit density p (  U )  vanishes. In this regime the surface 
fluctuations are dominated by the discontinuous (‘columnar’) deposit structure. This 
changes the roughness exponent to 5 = 1 and implies the breakdown of the hydro- 
dynamic description [ 151. 

The multiple restructuring model introduced by Visscher and Bolsterli [26] is 
somewhat intermediate between class I and class I1 processes. While an exact 
implementation of the deposition rules leads to a close-packed crystalline deposit 
structure, any amount of fluctuations in the sizes or positions of the particles destabilises 
the regular packing and generates a random packing of lower density [18, 19,261. 
Since such fluctuations are inevitable both in off-lattice computer simulations and in 
real experiments, the class I character of the process prevails only if the lattice structure 
is imposed from the outset. This explains the surprising difference found in [ l8 ,  191 
between lattice and off-lattice simulations of the same model. The lattice simulations 
agree with the predictions [7,8,  1 1 1  of the linear theory both in one [18] and two [19] 
dimensions, and also for d = 1 with spatial correlations in the particle flux [24]. The 
off-lattice simulations in d = 1 show a crossover from the exponents (2) at early times 
to those of the non-linear theory at late times [ 181, which is indicative of a small but 
non-zero value of A [ 161. In d = 2 the off-lattice results are inconclusive [ 191. In view 
of the amorphous deposit structure the asymptotic behaviour is predicted to be governed 
by the non-linear theory. The same argument applies to possible experimental realisa- 
tions of this model, such as the sedimentation of macroscopic particles from a viscous 
fluid. 

Since the rate of growth at a point of the surface is determined by the incident 
particle flux, deposition processes may be termed jlux-limited. In contrast, growth 
processes such as the Eden model [2,27-311 are reaction-limited in the sense that the 
rate of growth depends on the number of available growth sites rather than on the 
supply of new material. In these cases the growth velocity is given by [27] 

v ( u ) = J l + u *  n(u) (7) 
where n(u) is the number of growth sites per unit area of the inclined surface. For 
the Eden model n(u) is almost independent of U [28]. Other examples of growth 
processes are the single-step model [17,22,32], the PNG model of crystal growth 
[13,33,34] and the restricted SOS model [35]. For the former two models the function 
u ( u )  is known exactly in d = 1 [13]. In general, there is no reason to expect that n(u) 
should compensate the non-linear prefactor in (7). Thus generic growth processes are 
governed by the non-linear theory. This is in accord with the simulations 
[6, 13, 17,22,29-32,351. Van Saarloos and Gilmer [34] interpreted their numerical 
results on the two-dimensional PNG model in terms of the linear theory, extracting the 
dynamic exponent z = 2. However a re-analysis of the data shows that a better fit is 
obtained if z < 2, in agreement with preliminary large-scale simulations of the model 
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[36]. Note that in contrast to the deposition processes discussed above, the underlying 
lattice is irrelevant for growth processes. 

A transition from a class I deposition process to a reaction-limited growth process 
was recently observed in a lattice model of deposition with a finite concentration of 
falling particles [37]. In the limit of low concentration the model is equivalent to the 
lattice version of the multiple restructuring model [18] and belongs to class I .  For 
high concentrations the surface is covered by a layer of close packed, but mobile ‘mud’ 
particles. This layer forms a reservoir from which particles are incorporated into the 
deposit at the available growth sites (local minima of the surface), independent of the 
local particle flux. The expected change in the scaling exponents as a function of 
concentration was clearly observed in the simulations [37]. 

In conclusion, a classification of deposition and growth processes has been proposed 
which covers all models investigated so far, and which explains why some of these 
models are governed by the linear theory [7]. The classification is based on the 
inclination-dependent growth velocity U( U). For deposition processes, U( U )  is deter- 
mined by the bulk structure of the deposit. This lends further support to the general 
expectation [4] that the internal structure and the surface properties of a random 
aggregate are intimately related. 

I wish to thank Herbert Spohn for useful discussions. This work was supported by 
Deutsche Forschungsgemeinschaft. 
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